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Abstract: The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy 
to substantially increase the viability of PV for cost-competitive applications. The goal is that PV will contribute 
significantly to the U.S. and world energy supply and environmental enhancement in the 21st century. The HiPerf PV 
Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their 
sunlight-to-electricity conversion efficiencies during its course, to accelerate and enhance their impact in the 
marketplace. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted 
research in high-performance polycrystalline thin-film and multijunction concentrator devices.  This paper will 
describe progress of the subcontractor and in-house R&D on critical pathways for a PV technology having a high 
potential to reach cost-competitiveness goals: 25%-efficient, low-cost polycrystalline thin-film tandems for large-
area, flat-plate modules.   
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1. INTODUCTION 
 

The HiPerf PV Project aims at exploring the ultimate 
performance limits of existing PV technologies, 
approximately doubling their sunlight-to-electricity 
conversion efficiencies during its course, to accelerate 
and enhance their impact in the marketplace. Along with 
other criteria for success (module manufacturing cost and 
reliability, which are central to other components of the 
DOE National PV Program), module sunlight-to-
electricity conversion efficiency is a key parameter 
driving the economics of PV-generated electricity.   
Simply put, raising sunlight-to-electricity conversion 
efficiency reduces cost per unit of electrical output. The 
HiPerf PV Project directs Federal resources toward some 
of the most critical barriers to the widespread use of 
photovoltaics for energy-significant applications.  This 
addresses one of the highest-priority goals for applied 
research in the U.S. Photovoltaics Industry Roadmap [1]: 
“developing high-efficiency, low-cost materials and 
devices.” 

This paper will describe progress on exploring 
critical pathways for a PV technology having a high 
potential to reach cost-competitiveness goals: low-cost 
polycrystalline thin-film tandems for large-area, flat-plate 
modules (Figure 1).   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Tandem schematic  
(monolithic structure) 
 
The concept was introduced to increase efficiency, but its 
potential for reducing cost also became apparent many 

years ago [2].  This technology has the potential to reach 
the installed system cost goal of about $1/Wp with 
continued progress in efficiency, reliability, and 
manufacturing cost. 
 
 
2.0  APPROACH 
 
2.1  Project Description 

The NCPV at the National Renewable Energy 
Laboratory (NREL) directs in-house and subcontracted 
research in high- performance polycrystalline thin-film 
and multi-junction concentrator devices.  During the 
project period and pushing the research toward 
established goals extensive collaboration should produce 
significant contributions to the entire PV industry.  A 
roadmap of the High Performance PV Project approach is 
shown for approximately the next decade (Figure 2).  
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Figure 2: Roadmap of the High Performance PV Project 
 
The first phase of the project is critical because it 
provides a means to identify, explore, and accelerate the 
most promising paths for implementation, followed by 
commercial prototype products. These latter efforts 
constitute the second and third phases of this planned 
research program.  The first of a two-part phase, 
“Identifying Critical Pathways,” investigated a wide 
range of complex issues in both the polycrystalline thin-
film tandems and III-V multi-junction concentrators.  
These investigations provided initial modeling and 
baseline experiments for several advanced concepts to 
clarify some of the challenges and identify critical paths 
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for the longer-term development and application of high-
performance PV technologies.  The current Phase IB, 
“High Performance PV—Exploring and Accelerating 
Ultimate Pathways,” is a continuation of Phase I and 
addresses exploring and accelerating ultimate pathways 
to reach the project’s long-term goals.  It is thought that 
several promising approaches will be explored in each 
category during this phase, which will lead to Phase II, 
“Implementation of Pathways.” Seven companies and 
universities were competitively selected and have 
received awards for the HiPerf PV Phase IB (see Table I). 
 
Table I: Phase IB, “Exploring and Accelerating Ultimate 
Pathways” Subcontractor Awards 
 

Subcontractor Title 
Georgia Institute 
of Technology 

 

Thin-Film Si Bottom Cells 
for Tandem Device 
Structures 

University of 
Delaware (IEC) 

High-Performance PV-
Polycrystalline Thin-Film tandem 
Cells 

University of 
Toledo 

Sputtered II-VI Alloys and 
Structures for Tandem PV 

University of 
Florida 

Identification of Critical 
Paths in the Manufacturing 
of Low-Cost High-
Efficiency CGS/CIS Two-
Junction Tandem Cells 

University of 
Oregon 

Identifying the Electronic 
Properties Relevant to Improving 
the Performance of High Band-
gap Copper Based I-III-VI2 
chalcopyrite thin film PV devices  

Oregon State Novel Materials Development for 
Polycrystalline Thin-Film Solar 
Cells 

Light Spin 
Technologies 

Novel Polycrystalline Thin-Film 
Solar Cells 

 
 
3.0  PROJECT GOALS AND R&D FOCUS 
 
3.1  Goals 

To address HiPerf PV R&D long-term goals of 
bringing polycrystalline thin-film tandem cells 
(combining high-band gap and low-band gap single-
junctions) and modules toward 25% and 20% 
efficiencies, the project investigates a wide range of 
complex issues and provides initial modeling and 
baseline experiments of several advanced concepts. 
Recent work by Coutts et al. [3] modeling state-of-the-art 
thin-film devices has provided critical guidance for the 
project. A near-term milestone chart of the R&D thin-
film polycrystalline tandems is shown by year and will be 
described here (see Table II).  Throughout the projects 
term, there will be opportunities to reach established 
program goals by both disruptive technology advances 
and/or multiple incremental improvements.  

 
 

Table II: Near-term Milestones, High-Performance PV 
Project, Polycrystalline Thin-Film Tandems 
 

Date Milestone 

2002 10%-Efficient, 1.5 <Egap<1.8 eV Cell 
(Completed) 

2003 
Compare Device Design in Terms of 
Monolithic/Mechanical Structure 
(Completed) 

2004 Assess Research on Exploring Pathways 

2005 12%-Efficient Polycrystalline Thin-
Film Tandem 

2006 
15%-Efficient PolycrystallineThin-Film 
Tandem 

 
 
3.2  R&D Focus 

The wide-bandgap top cell material of the tandem is 
critical; it is anticipated that two-thirds of the tandem cell 
efficiency originates here.  Therefore, R&D is focused on 
a top cell, which is integrated with the bottom cell via an 
interconnect junction.   Transmission through the top cell 
is a challenge, requiring an optical band-gap (Eg) in the 
range of 1.5<Eg<1.8 eV, and minimal sub-bandgap 
absorption. High-bandgap alloys based on I-III-VI2 and 
II-VI compounds and other novel materials for the top 
cell are being investigated. Low-bandgap CIS and its 
alloys, thin Si, and other novel approaches are being 
considered for the bottom cell.   

Integration of the thin-film interconnect with the top 
cell optically, electrically, and with an eye toward process 
compatibility is being investigated; this includes the role 
of defects and how they affect the transport properties of 
this junction, as well as diffusion of impurities into the 
bulk. Transparent conducting oxide’s (TCO) are able to 
form a one-sided p/n+ interconnect (shorting/tunneling 
junction) between the TCO and a non-degenerate p-type 
absorber [4], playing a strong role in the tandem cell.  

The design in terms of a monolithic or mechanical 
stack is primarily determined by the choice of the high-
bandgap top cell material. There are pros and cons to 
both approaches. For example, with the monolithic 
approach, only one thick TCO, one grid, and one anti-
reflection coating (ARC) would be needed. However, 
current-matching and temperature-stability issues arise, 
as well as the necessity of a close thickness tolerance with 
the tunnel junction.  Whereas the mechanical stack design 
may appear at first glance much simpler than the 
monolithic design, other issues are involved.  For 
example, more materials (ARCs, TCOs, and glass) would 
be needed for the overall structure.  Regardless of the 
designs, both structures are being pursued during the 
project. 
 
 
4.0   PROGRESS IN HIGH-BANDGAP MATERIALS 
 

Several high-bandgap top cell materials have been 
identified under the project, but they still need further 
exploration (see Table III). The table lists several materials 
that have been highly successful in terms of the operating 
parameters for the tandem structure.  Several of the 
materials listed are described below. 



  
The Polycrystalline Thin Film PV Group at NREL 

has demonstrated that a surface-modified CGS cell 
exhibits the following NREL-confirmed device operating 
parameters: Voc = 0.823 volts, Jsc = 18.61 mA/cm2, fill 
factor = 66.8%, and total-area-efficiency = 10.2%.  CGS 
is a candidate top cell absorber material for thin film 
tandem devices.  Its bandgap is ideal at 1.68 eV.  This 
particular device had a bandgap of 1.64 eV.  Improving 
CGS device efficiency has proven to be a challenge over 
the past several years. The recent understanding of the 
differences in structural and electronic properties between 
CuIn(Ga)Se2 and CGS thin films and devices has led to 
varying the growth process in a way that is likely to make 
the CGS surface region similar to that of CI(G)S and to 
minimize defects in the material. This change led to a 
gain in the current density of about 3.7 mA/cm2 versus 
the previous record cell. 
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The University of Delaware, Institute of Energy 
Conversion (IEC) is investigating Cu(InGa)(SeS)2 films 
and Cd1-xZnxTe films of varying compositions and on 
specific substrates for the top cell of the tandem [5].  
Recently Cu(InGa)(SeS)2 films were deposited as part of 
a set of experiments in which the relative concentrations 
of sulfur to selenium and gallium to indium were varied 
to give a fixed bandgap of 1.5 eV.  The highest cell 
efficiencies in these experiments were achieved using 
absorber layers that contained no sulfur and with a 
relative gallium composition ratio of Ga/(In+Ga) = 0.75 ± 
0.03.  This corresponds to an optical bandgap of 1.5 ± 
0.03 eV.  Solar cells were fabricated at IEC using the 
structure glass/ Mo/Cu(InGa)(SeS)2/CdS/ZnO/ITO with 
Ni-Al collection grids and total area, defined by 
mechanical scribes, of 0.47 – 0.51 cm2.  Current-voltage 
measurements were completed at NREL on devices from  

two different depositions.  The best cell from one run had 
efficiency = 10.9 % with VOC = 0.826 V, JSC = 20.4 
mA/cm2, and fill factor = 64.5 %.   From the other run, 
the best cell had efficiency = 10.9 % with VOC = 0.836 V, 
JSC = 20.4 mA/cm2, and fill factor = 64. 
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The Polycrystalline Thin Film PV Group at NREL 
modified CdS/CdTe devices to assist in early  
identification of limitations to high optical transparency 
of high-performance top cells [6]. Initial attempts have 
produced devices demonstrating ~9 % efficiency.  First 
Solar material was used, and the devices were contacted 
with ZnTe:Cu/Ti. A project goal is to identify issues 
limiting Near-Infrared (NIR) optical transmission of the 
top device, spectrophotometry studies were initiated on 
similar transparent devices (i.e., incorporating ITO + 
metal grid contacts), as well as spectroscopic ellipsometry 
studies of component layers.  Preliminary results from 
these studies have shown that the 9% efficiency cell can 
be maintained for cells with NIR transparency of ~25%.  
Although this result establishes a good initial baseline, it 
also indicates that NIR transmission must be improved 
considerably for high-efficiency two-junction operation.  
Numerical modeling studies have shown that much of 
this NIR absorption can be ascribed to the specific type 
of TCO incorporated into the First Solar starting 
materials used in these studies. 
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Recently, University of South Florida demonstrated 
an 80% transparent CdSe device (Figure 3). The CdSe 
was deposited on a transparent conductor and a ZnSe/Cu 
contact was added.  The highest efficiency reported was 
17 mA/cm2. This is believed to be a record for a thin-film 
solid-state CdSe device. The challenge for these materials will 
be to develop p-type window layer contacts with the 
requisite optical and electronic properties to qualify for 
use in transparent, high-bandgap II-VI devices. 
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Figure 3: University of South Florida device  
transparency for 2-micron glass/TC/CdSe 
 
 
5.0  PROGRESS IN TANDEM SOLAR CELLS 
 

Several polycrystalline thin-film tandem structures 
have been developed and demonstrated under the HiPerf 
project, but they still need further exploration (Table IV).  
The table lists several structures, both mechanical and 
monolithic designs, in terms of the operating parameters. 
Several of these novel devices will be described below. 

The NREL High-Performance Polycrystalline Thin-
Film Tandem Group demonstrated a prototype monolithic 
tandem using Si and CdS/CuGaSe2 (CGS) as the bottom 
and top cell absorbers, respectively [6]. Figure 4 shows a 
schematic of the device. The bottom cell is an NREL-
grown, crystalline Si cell, with a diffused Al back contact 
and a p/n+ junction. The CGS top cell was grown by 
elemental evaporation following the NREL-patented 3-
stage process. The interconnect junction consists of an n+ 
indium tin oxide layer on n+ c-Si, which had been shown 
earlier to produce a reasonably good transparent back 
contact to CGS[7]. The non-official measurement shows 
excellent voltage addition of about 1.3 V, a short circuit

current of 9 ma/cm2, and a fill factor of 43%, with an 
overall efficiency of about 5.1%.  Witness CGS cells 
grown on Mo showed Voc of about 730 mV, despite the 
non-ideal Cu/Ga ratio of ~0.99.  Quantum efficiency 
results reveal that the top cell is still far from ideal. 
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Figure 4: Schematic of CGS, c-Si tandem 
 

The NREL High-Performance Polycrystalline Thin-
Film Tandem Group demonstrated a prototype 
mechanical stack tandem using CGS and CIS for the top 
cell absorber and bottom cell, respectively [7]. The CGS 
top cell was grown by elemental evaporationfollowing 
the NREL-patented 3-stage process. The transmission 
data are shown to be 70%-80% for SnO2 /CGS/CdS/ZnO 
device (Figure 5). This was a mechanical stack with an 
official NREL measurement of 9.7% efficiency and a Voc 
of 1.29 V with an AR coating.    

University of Toledo (UT) under a High-Performance  
PV subcontract, “Polycrystalline Thin-Film Tandem. 
Photovoltaic Cells,” demonstrated a two-terminal CdTe-
HgCdTe cell (Figure 6).  The tandem cell was fabricated 
in the superstrate structure starting with a sputter- 
deposited top cell [SnO2:F/CdS/CdTe (1.8-2.0 µm)] with 
UT's standard processing and CdCl2 treatment condition 
P-type ZnTe:N and n-type ZnO: Al layers were used to  

 
Table IV: Tandem structures and their parameters 
(NREL verified) 
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Figure 5: Transmission for SnO2/CGS/CdS/ZnO Device 
 
form a recombination junction [8,9].  The bottom cell, 
CdS/HgCdTe (1.2-1.5µm), was also sputter-deposited 
with a bandgap of HgCdTe of about 1.0-1.15 eV.  A 
second CdCl2 treatment was given before finishing the 
cells with UT's standard evaporated Cu/Au back contact.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Schematic of the University of Toledo 
SnO2:Fe/CdS/CdTe/ZnTe:N/ZnO:Al/CdS/HgCdTe 
Device 
 
Researchers from UT believe that better deposition 
control and the optimization of post-deposition treatment 
of HgCdTe films will lead to better cell performance for 
both single-junction HgCdTe cells and tandem cells. The 
cell area was 0.06 cm2.  The I-V measurement shows Voc 
of 960mV, and Jsc of 1.92 mA/cm2 and efficiency of 
1.2%. The QE characterization shows that the 
photocurrent was limited by the HgCdTe cell current due 
to the bandgap being too large.  This is an excellent first 
demonstration of a two-terminal CdTe-HgCdTe. 

Georgia Institute of Technology, under a High 
Performance PV subcontract, is investigating the 
compatibility of c-Si-based bottom cells with CGS top 
cell materials. As a component of a thin-film tandem solar 
cell, the Si bottom cell is an excellent candidate for 
surviving the fabrication of the top cell. This will be 
demonstrated by fabricating monolithic tandem structures. To 
date, it has been found that the junction quality of the Si 
bottom cell remains intact after CIGS deposition.  

Cu(InGa)Se2 reduces the long wavelength QE response 
of the Si cell, which is likely due to sub-bandgap 
absorption in the Cu(InGa)Se2 film.   
 
 
6.0  CONCLUSIONS 
 

Phase IB, “Exploring and Accelerating Ultimate 
Pathways,” of the HiPerf PV Project is underway with in-
house and subcontracted research efforts in high-
performance polycrystalline thin-film tandems.  

 

Our investigations have led to several wide-bandgap 
materials that are now world-record efficiencies.  These 
high-bandgap materials are beginning to meet 
requirements in terms of Voc, Jsc and transmission for 
polycrystalline thin-film tandems. 

Both monolithic and mechanical tandems have been 
developed under the project, they are listed in Table IV. 
These devices used high band-gap alloys based on I-III-
VI2 and II-VI compounds.  The developments under the 
High-Performance PV Project reported here are progress 
towards achieving long-term DOE-goals [1]. The project 
is focused to assure that tandem thin-film polycrystalline 
modules reach efficiency levels consistent with cost-
competitive goals. 
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